

PAQ-003-1015043 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Statistics: Paper - S - 502

(Mathematical Statistics) (New Course)

Faculty Code: 003

Subject Code: 1015043

Time : $2\frac{1}{2}$ H	ours] [Total Marks :	70
Instructions	: (1) All questions carry equal marks.	
	(2) Students can use their own scientific calculator	rs.
1 (a) Give	the answer of following questions:	4
(1)	is a characteristic function of Binomial distribution.	
(2)	is a characteristic function of Geometric distribution.	
(3)	is a characteristic function of Standard Normal distribution.	
(4)	is a characteristic function of Chi-square distribution.	
(b) Writ	e any one :	2
(1)	Show that $\left \phi_{x}(t)\right \leq 1$.	
(2)	Obtain characteristic function of Poisson distribution.	

(c) Write any one:

- (1) Obtain characteristic function of Normal distribution.
- (2) Obtain Probability density function for the

characteristic function $\phi_x(t) = e^{-\left(\frac{t^2\sigma^2}{2}\right)}$.

(d) Write any one:

5

- (1) State and prove that Chebchev's inequality.
- (2) Prove that

(i)
$$\mu_r' = (-i)^r \left[\frac{d^r}{dt^r} \phi_x(t) \right]_{t=0}$$

(ii)
$$\mu_r = (-i)^r \left[\frac{d^r}{dt^r} \phi_u(t) \right]_{t=0}$$
; where $u = x - \mu$.

- 2 (a) Give the answer of following questions:
 - (1) For Normal distribution $\mu_r = k_4 + 3k_2^2$ is _____.
 - (2) For Normal distribution Mean Deviation = _____.
 - (3) Measured of Kurtosis coefficient for Normal distribution are _____ and ____.
 - (4) If two independent variates $X_1 \sim N\left(\mu_1, \sigma_1^2\right)$ and $X_2 \sim N\left(\mu_2, \sigma_2^2\right)$, then $X_1 + X_2$ is distributed as _____.

(b) Write any one

2

- (1) Obtain MGF of Standard Normal variate.
- (2) Obtain CGF of Normal distribution and from it show that $\mu_4=3~\sigma^4.$
- (c) Write any one:

3

- (1) Show that a linear combination of independent Normal variates is also Normal variate.
- (2) Obtain mean deviation from the mean for Normal distribution.
- (d) Write any one:

5

- (1) Drive Normal distribution.
- (2) Obtain MGF of Normal distribution and also show that $\beta_1 = 0$ and $\beta_2 = 3$.
- **3** (a) Give the answer of following questions:

- (1) _____ is a moment generating function of $\gamma(\alpha, p)$.
- (2) If two independent variates $X_1 \sim \gamma(n_1)$ and $X_2 \sim \gamma(n_2)$ then $\frac{x_1}{x_1 + x_2}$ is distributed as _____.
- (3) If two independent variates $X_1 \sim \Lambda\left(\mu_1, \sigma_1^2\right)$ and $X_2 \sim \Lambda\left(\mu_2, \sigma_2^2\right)$ then $X_1 \div X_2$ is distributed as
- (4) Weibull distribution has application in _____.

(b) Write any one:

- $\mathbf{2}$
- (1) Define Beta distribution of first kind and find its mean.
- (2) Define Uniform distribution and find its mean.
- (c) Write any one:

3

- (1) Define Beta distribution of second kind and find its mean and variance.
- (2) Define Exponential distribution and find its mean and variance.
- (d) Write any one:

5

- (1) Obtain MGF of Gamma distribution with parameters α and p. Also show that $3\beta_1-2\beta_2+6=0.$
- (2) Obtain Coefficient of skewness for Log Standard Normal distribution.
- 4 (a) Give the answer of following questions:

4

(1) If χ_1^2 and χ_2^2 are two independent Chi-square variates with d.f. n_1 and n_2 respectively, then the

distribution of
$$\frac{\chi_1^2}{\chi_1^2 + \chi_2^2}$$
 is _____.

- (2) t distribution curve in respect of tails is always
- (3) The Chi-square distribution curve for d.f. 3 or more is always _____.
- (4) t distribution with 1 d.f. reduces to _____.

- Write any one: 2 (b) Obtain MGF of χ^2 distribution. (2)Obtain relation between t-distribution and F-distribution. 3 (c) Write any one: Obtain CGF of χ^2 distribution and show that $3\beta_1 - 2\beta_2 + 6 = 0.$ Obtain limiting form of t-distribution for large (2)degrees of freedom. Write any one: (d) 5 Drive F-distribution. (1)(2)Drive t-distribution. Give the answer of following questions: 4 (a) If $r_{12} = 0.86$, $r_{13} = 0.65$ and $r_{23} = 0.72$ $r_{12.3} =$ _____. If $r_{12} = 0.28$, $r_{23} = 0.49$, $r_{31} = 0.51$, $\sigma_1 = 2.7$, (2) $\sigma_2 = 2.4$, $\sigma_3 = 2.7$, then $b_{31,2} =$ _____. (3)Multiple correlation is a measure of ____ association of a variable with other variables. (4)Partial correlation coefficient is the simple
 - (1) Usual notation prove that

Write any one:

$$\sigma_{1.23}^2 = \sigma_1^2 \left(1 - r_{12}^2 \right) \left(1 - r_{13.2}^2 \right).$$

(2) Obtain μ_{20} for Bi-variate Normal distribution.

correlation between _____ variables.

(b)

5

(c) Write any one:

3

(1) Usual notation of multiple correlation and multiple regression, prove that

$$b_{12} = \frac{b_{12.3} + b_{13.2} \ b_{32.1}}{1 - b_{13.2} \ b_{31.2}}.$$

- (2) Obtain conditional distribution of x when y is given for Bi-variate distribution.
- (d) Write any one:

- (1) Obtain marginal distribution of y for Bi-variate distribution.
- (2) Usual notation of multiple correlation and multiple regression, prove that

$$R_{1.23}^2 = \frac{r_{12}^2 + r_{13}^2 - 2r_{12}r_{23}r_{13}}{1 - r_{23}^2}.$$